

3 | Editor's Pick | Virology | New-Data Letter

Crimean-Congo hemorrhagic fever virus Africa 1 lineage in Hyalomma species ticks, Tunisia, 2024

Silvia Fabi, 12 Giuseppe Di Pietra, 2 Elisabetta Valente, 4 Massimo Bellato, 1 Chiara Agostini, 1 Michele Paccagnella, 1 Elisa Franchin, 14 Valentina Chisu,⁵ Cipriano Foxi,⁵ Claudia Del Vecchio,^{1,4} Ignazio Castagliuolo,^{1,4} Giovanna Masala,⁵ Cristiano Salata¹

AUTHOR AFFILIATIONS See affiliation list on p. 3.

KEYWORDS Hyalomma, CCHFV, Nairovirus, Tunisia

rimean-Congo hemorrhagic fever virus (CCHFV) represents the most widespread tick-borne high-consequence pathogen globally, having been detected across Africa, Eastern Europe, the Middle East, and Asia. Recently, CCHFV has gradually expanded its geographical distribution into southwestern Europe, including Spain, Portugal, and France (1-4). Phylogenetic analysis suggests multiple virus introductions, likely via migratory birds carrying infected ticks from Africa (1, 3, 4).

In this study, we investigated the presence of CCHFV in Hyalomma ticks collected in Tunisia, a country where CCHFV circulation has been documented in animals (5). Tunisia serves as a stopover site for migratory birds before they cross the Mediterranean Sea, representing a potential hotspot for the acquisition of infected ticks that may subsequently be released in succeeding stopover sites.

A total of 368 ticks were removed using fine forceps from parasitized dromedary camels across eight sampling localities in the Tataouine district of southern Tunisia (Fig. 1A).

Each tick was placed individually into a labeled sterile tube, and morphological identification was performed using taxonomic keys (6). All ticks were identified as belonging to the genus Hyalomma; however, due to the taxonomic challenges within this genus and the lack of molecular confirmation, we refer to these specimens as Hyalomma spp.

Each tick was homogenized using a mechanical tissue lyser (Qiagen Tissuelyser II). Nucleic acids were extracted from 200 µL of tick homogenate employing the MagNA Pure 96 System (Roche Applied Sciences), according to the manufacturer's instructions. RNA was subject to one-step real-time RT-PCR for the detection of CCHFV, using the AgPath-ID™ One-Step RT-PCR Kit (Thermo Scientific). Previously reported primers and probes targeting CCHFV's S segment were used (7). Five (1.36%) ticks tested positive (Table 1). Of these, three were collected from a female dromedary camel in the Ksar Ouled Soultan area and two from another in the Remada area (Fig. 1). CCHFV-positive samples were further subjected to PCR using primers CC-7F (5'-GTCAGGCCGTTCAGGAA TAG-3') and CC-10R (5'-ATTGCCCTTGACGTTGTAGG-3'), targeting a 935 bp region of the S segment of the viral genome (nucleotides 721-1655 of the strain IbAr10200, accession number U88410.1), (8) and amplicons underwent Sanger sequencing (Eurofins). The resulting sequences were subjected to analysis employing the Basic Local Alignment Search Tool (BLAST; http://blast.ncbi.nlm.nih.gov/Blast.cqi) alongside the GenBank database for verification of the viral identity. All sequences were deposited in the GenBank (Table 1).

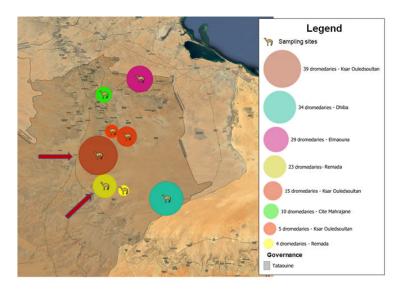
Phylogenetic analysis showed that the CCHFV sequences clustered with those of Clade I (Africa 1) previously identified in Senegal and Algeria (Fig. 1B) (9).

Editor Stacey Schultz-Cherry, St Jude Children's Research Hospital, Memphis, Tennessee, USA

Address correspondence to Cristiano Salata. cristiano.salata@unipd.it.

The authors declare no conflict of interest.

See the funding table on p. 3.


Published 23 September 2025

Copyright © 2025 Fabi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Month XXXX Volume 0 Issue 0

New-Data Letter Journal of Virology

Α

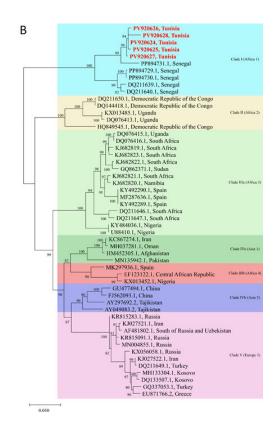


FIG 1 Local distribution of hosts. The arrows demarcate the locations where *Hyalomma* spp. testing positive for CCHFV were collected (A). The map was generated using QGIS software (version 3.38.2). Phylogenetic analysis of CCHFV in *Hyalomma* spp. ticks collected from dromedary camel, Tunisia, 2024 (B). Phylogenetic analysis of CCHFV S segment sequences was conducted in MEGA12 (https://www.megasoftware.net). The tree was constructed using the Maximum-Likelihood algorithm and Kimura2-parameter model. Results of the bootstrap test in 1,000 replicates are shown next to the branches. Only bootstrap values >80 are shown. Red and bold font indicates strains detected from Tunisia; other sequences are named by GenBank accession number and geographic origin. Clades of CCHFV, based on the S segment, are indicated; clade I (Africa 1; Senegal and West Africa), clade II (Africa 2; South and Central Africa), clade IIIb (Africa 3; West and South Africa), clade IIIb (Africa 4), clade IVa (Asia 1; Iran, Pakistan, and the Middle East), clade IVb (Asia 2; Kazakhstan, Tajikistan, and China), and clade V (Europe-1).

This study substantiates the circulation of CCHFV within *Hyalomma* spp. infesting dromedary camels in Tunisia and provides the first phylogenetic characterization of CCHFV strains circulating in the country. Additionally, the detection of multiple positive ticks on individual animals supports the likelihood of infection in dromedary camels. This observation aligns with recent evidence of CCHFV exposure in dromedaries from

TABLE 1 Hyalomma spp. ticks positive for CCHFV collected from dromedary camels in eight sites of Tunisia, 2024

Sample ID ^a	Stage	Host	Municipality	Geographic coordinates	Ct ^b	Isolate name/GenBank accession number
22A	Partially engorged male Female dromedary		KOS	32.569075/10.447065	36.10	CCHFV/TUN/KOS/
		camel/10-year-old				2024/22A/PV920625
22B	Partially engorged male				24.80	CCHFV/TUN/KOS/
						2024/22B/PV920626
22C	Unengorged female	2			36.38	CCHFV/TUN/KOS/
						2024/22C/PV920627
60A	Engorged male	Female dromedary	REM	32.366655/10.498951	35.11	CCHFV/TUN/REM/
		camel/16-year-old				2024/60A/PV920628
60B	Partially engorged				26.51	CCHFV/TUN/REM/
	female					2024/60B/PV920624

^aID, identification.

Month XXXX Volume 0 Issue 0 10.1128/jvi.01401-25 **2**

^bCt, cycle threshold.

Downloaded from https://journals.asm.org/journal/jvi on 16 October 2025 by 147.162.241.196.

neighboring Algeria (9), suggesting a broader role of these animals in the ecology and transmission of the virus. Phylogenetic analysis revealed that CCHFV strains belong to the Africa 1 clade, which is characteristic of West African and Algerian isolates and has also been identified in CCHFV-positive ticks from Spain and France. This finding underscores the importance of considering avian migratory routes in the epidemiology and geographical spread of CCHFV across the African continent and the Mediterranean basin.

ACKNOWLEDGMENTS

We are grateful to Dr. Ben Smida Boubaker for conducting field sampling within the framework of a PhD project.

This research was supported by EU funding within the MUR PNRR Extended Partnership initiative on Emerging Infectious Diseases (Project no. PE00000007, INF-ACT).

This publication was produced while Silvia Fabi was attending the PhD program in Sustainable Development and Climate Change at the University School for Advanced Studies IUSS Pavia, Cycle XXXVIII, with the support of a scholarship financed by the Ministerial Decree no. 351 of 9th April 2022, based on the NRRP - funded by the European Union - NextGenerationEU - Mission 4 "Education and Research", Component 1 "Enhancement of the offer of educational services: from nurseries to universities".

AUTHOR AFFILIATIONS

¹Department of Molecular Medicine, University of Padova, Padua, Italy

AUTHOR ORCIDs

Silvia Fabi http://orcid.org/0009-0005-6919-1209

Massimo Bellato http://orcid.org/0000-0001-7428-0656

Michele Paccagnella https://orcid.org/0009-0000-3985-7739

Claudia Del Vecchio http://orcid.org/0000-0001-5645-9126

Cristiano Salata http://orcid.org/0000-0002-5136-7406

FUNDING

Funder	Grant(s)	Author(s)
Ministero dell'Università e della Ricerca	PE0000007	Ignazio Castagliuolo
		Cristiano Salata

AUTHOR CONTRIBUTIONS

Silvia Fabi, Data curation, Formal analysis, Investigation, Methodology | Giuseppe Di Pietra, Data curation, Formal analysis, Investigation, Software | Elisabetta Valente, Data curation, Investigation, Methodology | Massimo Bellato, Data curation, Investigation, Software | Michele Paccagnella, Data curation, Investigation | Elisa Franchin, Formal analysis, Methodology, Supervision, Validation | Valentina Chisu, Data curation, Investigation, Methodology | Cipriano Foxi, Data curation, Investigation, Methodology | Claudia Del Vecchio, Methodology, Supervision, Validation | Ignazio Castagliuolo, Project administration, Supervision | Giovanna Masala, Resources, Supervision | Cristiano Salata, Conceptualization, Funding acquisition, Project administration, Resources, Supervision, Writing - original draft.

²Istituto Universitario di Studi Superiori, Pavia, Italy

³UOC Medicina di Laboratorio, Ospedale San Bassano, Bassano, Italy

⁴Microbiology and Virology Diagnostic Unit, Padua University Hospital, Padua, Italy

⁵Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy

Downloaded from https://journals.asm.org/journal/jvi on 16 October 2025 by 147.162.241.196.

DATA AVAILABILITY

All data needed to evaluate the conclusions in the study are present in the paper. Sequences were deposited in GenBank with the following accession numbers: PV920624, PV920625, PV920626, PV920627, and PV920628.

REFERENCES

- Lorenzo Juanes HM, Carbonell C, Sendra BF, López-Bernus A, Bahamonde A, Orfao A, Lista CV, Ledesma MS, Negredo AI, Rodríguez-Alonso B, Bua BR, Sánchez-Seco MP, Muñoz Bellido JL, Muro A, Belhassen-García M. 2023. Crimean-Congo hemorrhagic fever, Spain, 2013-2021. Emerg Infect Dis 29:252–259. https://doi.org/10.3201/eid2902.220677
- European Centre for Disease Prevention and Control (ECDC). 2025. Cases
 of Crimean–Congo haemorrhagic fever infected in the EU/EEA, 2013–
 present. Available from: https://www.ecdc.europa.eu/en/crimean-congohaemorrhagic-fever/surveillanc e/cases-eu-since-2013. Retrieved 03 Jul
 2025.
- Bernard C, Joly Kukla C, Rakotoarivony I, Duhayon M, Stachurski F, Huber K, Giupponi C, Zortman I, Holzmuller P, Pollet T, et al. 2024. Detection of Crimean-Congo haemorrhagic fever virus in *Hyalomma marginatum* ticks, southern France, May 2022 and April 2023. Euro Surveill 29:2400023. http s://doi.org/10.2807/1560-7917.ES.2024.29.6.2400023
- Kiwan P, Masse S, Piorkowski G, Ayhan N, Gasparine M, Vial L, Charrel RN, de Lamballerie X, Falchi A. 2024. Crimean-Congo hemorrhagic fever virus in ticks collected from Cattle, Corsica, France, 2023. Emerg Infect Dis 30:1036–1039. https://doi.org/10.3201/eid3005.231742
- Rekik S, Hammami I, Timoumi O, Maghzaoua D, Khamassi Khbou M, Schulz A, Groschup MH, Gharbi M. 2024. A review on Crimean-Congo

- hemorrhagic fever infections in Tunisia. Vector Borne Zoonotic Dis 24:325–337. https://doi.org/10.1089/vbz.2023.0079
- Estrada-Peña A, Kleinerman G, Baneth G. 2017. Ticks of Europe and North Africa: a guide to species identification. Springer International Publishing, Cham, Switzerland.
- Monteil V, Salata C, Appelberg S, Mirazimi A. 2020. Hazara virus and Crimean-Congo hemorrhagic fever virus show a different pattern of entry in fully-polarized Caco-2 cell line. PLoS Negl Trop Dis 14:e0008863. https://doi.org/10.1371/journal.pntd.0008863
- Salvati MV, Salaris C, Monteil V, Del Vecchio C, Palù G, Parolin C, Calistri A, Bell-Sakyi L, Mirazimi A, Salata C. 2021. Virus-derived DNA forms mediate the persistent infection of tick cells by hazara virus and Crimean-Congo hemorrhagic fever virus. J Virol 95:e0163821. https://doi.org/10.1128/JVI.0 1638-21
- Temani M, Hachid A, Garni R, Guessoum AA, Benaissa MH, Khardine AF, Kimouche A, Hakem A, Bitam I, Benallal KE, Lafri I. 2025. Crimean-Congo hemorrhagic fever virus Africa 1 lineage in *Hyalomma dromedarii* ticks, Algeria, 2023. Emerg Infect Dis 31:1673–1676. https://doi.org/10.3201/eid 3108.250123